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Abstract: We establish the necessary framework for inputting any kind of mesostructure into multi-
scale models for granular materials. Keeping intact the general statistical homogenization scheme, we
propose a strategy to compute the mechanical response of the mesostructures directly with discrete
element simulations of a few grains or thanks to surrogate models relying on artificial neuron networks
(ANN). By applying machine learning techniques at the mesoscale (instead of the Representative
Elementary Volume scale), it is indeed possible to generate the necessary learning database from
discrete element simulations at a relatively cheap computational cost. We apply the meso-DEM and
meso-ANN strategies to the H-model (one particular micromechanical model), and we show that they
can replicate the original analytical expression of the model on biaxial tests. This work paves the way
for using more complex mesostructures to account for instance for gap-graded materials.

1. Introduction
When it comes to deriving the constitutive behavior of a heterogeneous material from a detailed

description of its microstructure, two homogenization strategies can be employed, namely spatial ho-
mogenization or statistical homogenization. On the one hand, spatial homogenization is based on
the concept of the representative elementary volume (REV), and the constitutive relationships are
obtained by computing the volume averages of local stresses and strains. On the other hand, statisti-
cal homogenization is based on the description of the microstructure as a collection of independent
features with simple mechanical behavior. The macroscopic behavior is then obtained as a weighted
average of the responses of all the simple mechanical systems. Taylor opened the way for the de-
velopment of such constitutive models with the so-called multislip (or multiplane) theory [1]. This
theory was adapted later to geomaterials and gave rise to microplane models (see for instance [2, 3])
with a fractured continuum media in mind. But for granular media, the statistical description of the
microstrucutre only by contact planes proved to be too poor, as local arrangements of a few grains
form mesostructures responsible for a myriad of emerging properties [4, 5]. Therefore, the current
challenge faced by most multiscale models based on statistical homogenization is to incorporate suf-
ficient relevant microstructural features into the simplified mesostructures for complex properties to
emerge during the upscaling process.

For granular materials, one particular example of multiscale models that embed explicitely a
mesostructure is the H-model [6, 7, 8]. This model relies on elementary mesostructures that consist
in hexagonal patterns of six circular grains in 2D and bi-hexagonal patterns of ten spherical grains in
3D (the ”H-cell”). Because of the imposed H-cell symmetry, the mechanical response of the model is
analytically derivable. However, the model suffers from several known limitations, which will require
the use of enriched mesostructures probably too complex for an analytical treatment. In particular, the
model cannot account for the behavior of widely graded materials and the possible consequences of
internal erosion since the H-cell is formed of grains of equal radii. In the present work, we propose
to waive the analytical resolution of the mesoscale behavior of the H-model while keeping intact the
homogenization scheme of the model recalled in Figure 1. Instead, we propose meso-DEM (discrete
element method) and meso-ANN (artificial neuron network) strategies to solve the H-cell behavior.



Figure 1. The H-cell (left) and the homogenization scheme for the standard H-model highlighting the
integration of meso-DEM and meso-ANN strategies (right).

2. Meso-DEM strategy

Using the open source software YADE, the DEM model of the 2D H-cell can be proposed by
using spheres of equal radii in interactions through linear elasto-frictionnal contact laws. To conform
to the hypotheses of the original H-model, the degrees of freedom in rotation are blocked, the ratchet-
ing correction terms are disabled and strain control is imposed by controlling the grain velocities. For
grains of a unit size (1 m), the contact parameters consist of a normal stiffness kn = 2.108 (N/m), a
tangential stiffness kt = 0.5kn and a friction angle ϕg = 30◦. After benchmarking the DEM response
of a single H-cell against the analytical expression of the H-model [6, 7], the DEM based version of
the H-model is constructed as follows:

1. Define a common macroscopic strain increment δϵmacro for all H-cells ;
2. Pass δϵmacro to a distribution of H-cells of different orientations with respect to the macroscopic

frame. The same δϵmacro generate different incremental changes in the geometry of the H-cells
depending on their orientation ;

3. For each H-cell direction, load the previous configuration in YADE and run a DEM simulation
to update the geometry. Save the new H-cell configuration and return the different meso-stresses
according to the Love-Weber formula ;

4. Compute the macro-stress as a statistical average of all meso-stresses. The weights are taken equal
if the initial microstructure is isotropic.

Such a meso-DEM approach resembles to standard DEMxFEM approaches [9] except that it
relies on several DEM simulations of a few grains (that run easily in parallel) compared to a single
REV scale DEM simulation containing a much larger number of grains.

3. Meso-ANN strategy

Instead of running DEM simulations for several mesostructures at each strain increment, an
alternative strategy consists in using the DEM to explore the accessible mesostructure configurations
(geometry and contact forces) and construct a learning database by probing the incremental response
for many strain increments. These offline DEM computations are used to train an artificial neuron
network (ANN) that is used instead of the DEM in the homogenization scheme of Figure 1. Applying
machine learning at the mesoscale is interesting for two reasons: the construction of the learning
database relies of very fast simulations, and we can take out of the machine learning process as much
physics as possible (e.g., the strain homogeneity and statistical homogenization steps).



To explore the accessible mesostructure configurations, we propose to follow proportional load-
ing paths for different initial opening angle of the H-cell. Then, for sampled configurations, we impose
incremental strain probes to get the incremental behavior of the H-cells. By doing so, we construct a
learning database with 3.105 data points.

The construction of the ANN for the learning process is illustrated in Figure 2, where the input
parameters are computed during the proportional loading step (in blue) or during the incremental
strain probing step (in red).

Figure 2. Architecture of the ANN used to learn the mesoscale behavior of the H-cell.

After testing several ANN architectures, normalization methods and loss functions, we have selected
an ANN with three hidden layers of eight nodes, a hyperbolic tangent activation function, the z-score
normalization method and the mean square error (MSE) loss function. The learning database was
cured from pathological geometrical configuration, normalized by dividing lengths and forces by the
grain diameter and the grain diameter times the contact stiffness respectively, and split into training
and validation sets in respective proportions 0.8 and 0.2.

4. Benchmark against analytical H-model

To validate the meso-DEM and meso-ANN versions of the H-model, we conducted constant
volume biaxial tests and benchmarked the predictions against the original analytical version of the
H-model. Figure 3 show the results of the three models in the Cambridge plane.

Figure 3 highlights that all models give very similar results, which validates the construction of
the meso-DEM and meso-ANN versions of the H-model. The ANN-model is completely superposed
with the original analytical model while there is a slight discrepancy observed in the results from the
DEM model. This is related to the implementation of the strain control in YADE during the isotropic
compression step, which did not enable to reach the prescribed p with the same precision as for the
analytical model. It is remarkable to highlight that the three H-models are able to account for the static
liquefaction observed for loose material during constant volume biaxial test.

5. Perspectives

The use of meso-DEM simulations directly in multi-scale modeling and for constructing learn-
ing data bases opens promising perspectives for the development of multi-scale models relying on
complex mesostructures for which no analytical relation exists to describe their mechanical behavior.
In particular, when considering widely graded materials with varying fine contents (as it is the case



Figure 3. Comparison between the mechanical responses of the meso-DEM and meso-ANN models
against the original analytical H-model for a constant volume biaxial test. The initial opening angle
used in all models is α = 55◦. Deviatoric stress q and mean pressure p are expressed in 2D conditions.

for materials subjected to internal erosion or filtration processes) a 3D H-cell with fine grains included
in the pore space can be used in meso-DEM or meso-ANN enriched version of the H-model [10].
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